Boundary Determination of Conductivities and Riemannian Metrics via Local Dirichlet-to-Neumann Operator
نویسندگان
چکیده
We consider the inverse problem to identify an anisotropic conductivity from the Dirichlet-to-Neumann (DtN) map. We first find an explicit reconstruction of the boundary value of less regular anisotropic (transversally isotropic) conductivities and their derivatives. Based on the reconstruction formula, we prove Hölder stability, up to isometry, of the inverse problem using a local DtN map.
منابع مشابه
Dirichlet to Neumann Operator on Differential Forms
We define the Dirichlet to Neumann operator on exterior differential forms for a compact Riemannian manifold with boundary and prove that the real additive cohomology structure of the manifold is determined by the DN operator. In particular, an explicit formula is obtained which expresses Betti numbers of the manifold through the DN operator. We express also the Hilbert transform through the DN...
متن کاملUniqueness for the electrostatic inverse boundary value problem with piecewise constant anisotropic conductivities
We discuss the inverse problem of determining the, possibly anisotropic, conductivity of a body Ω ⊂ Rn when the so-called Neumann-to-Dirichlet map is locally given on a non empty curved portion Σ of the boundary ∂Ω. We prove that anisotropic conductivities that are a-priori known to be piecewise constant matrices on a given partition of Ω with curved interfaces can be uniquely determined in the...
متن کاملFriedlander’s Eigenvalue Inequalities and the Dirichlet-to-neumann Semigroup
If Ω is any compact Lipschitz domain, possibly in a Riemannian manifold, with boundary Γ = ∂Ω, the Dirichlet-to-Neumann operator Dλ is defined on L2(Γ) for any real λ. We prove a close relationship between the eigenvalues of Dλ and those of the Robin Laplacian ∆μ, i.e. the Laplacian with Robin boundary conditions ∂νu = μu. This is used to give another proof of the Friedlander inequalities betwe...
متن کاملReconstruction from boundary measurements for less regular conductivities
In this paper, following Nachman’s idea [14] and Haberman and Tataru’s idea [9], we reconstruct C conductivity γ or Lipchitz conductivity γ with small enough value of |∇logγ| in a Lipschitz domain Ω from the Dirichlet-to-Neumann map Λγ . In the appendix the authors and R. M. Brown recover the gradient of a C-conductivity at the boundary of a Lipschitz domain from the Dirichlet-to-Neumann map Λγ...
متن کاملOn Multilinear Spectral Cluster Estimates for Manifolds with Boundary
Let (M, g) be a smooth, compact n-dimensional Riemannian manifold with boundary and let ∆ be the corresponding Laplace-Beltrami operator acting on functions. If the boundary is non-empty, we assume that either Dirichlet or Neumann conditions are imposed along ∂M. Consider the operators χλ defined as projection onto the subspace spanned by the Dirichlet (or Neumann) eigenfunctions whose correspo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Math. Analysis
دوره 34 شماره
صفحات -
تاریخ انتشار 2002